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Action Principle and Algebraic Approach to Gauge
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The action principle is used to derive, by an entirely algebraic approach, gauge trans-
formations of the full vacuum-to-vacuum transition amplitude (generating functional)
from the Coulomb gauge to arbitrary covariant gauges and in turn to the celebrated
Fock–Schwinger (FS) gauge for the Abelian (QED) gauge theory without recourse to
path integrals or to commutation rules and without making use of delta functionals.
The interest in the FS gauge, in particular, is that it leads to Faddeev–Popov ghosts-free
non-Abelian gauge theories. This method is expected to be applicable to non-Abelian
gauge theories including supersymmetric ones.
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1. INTRODUCTION

About two decades ago, we have seen (Manoukian, 1986, 1987) that the
very elegant action principle (Schwinger, 1951a,b, 1953a,b, 1954) may be used
to quantize gauge theories in constructing the vacuum-to-vacuum transition am-
plitude and the Faddeev–Popov factor (Faddeev and Popov, 1967), encountered
in non-Abelian gauge theories, was obtained directly from the action principle
without much effort. No appeal was made to path integrals, no commutation rules
were used, and there was not even the need to go into the well-known complicated
structure of the Hamiltonian (Fradkin and Tyutin, 1970) in non-Abelian gauge
theories. Of course path integrals are extremely useful in many respects and may
be formally derived from the action principle cf. (Symanzik, 1954; Lam, 1965;
Manoukian, 1985). We have worked in the Coulomb gauge, where the physical
components are clear at the outset, to derive the expression for the vacuum-to-
vacuum transition amplitude (generating functional) including the Faddeev–Popov
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factor in non-Abelian gauge theories. It is interesting to note also that the Coulomb
gauge naturally arises (Faddeev and Jackiw, 1988; Ogawa et al., 1986), see also
(Jogleker and Mandal, 2002), in gauge field theories as constrained dynamics
cf. (Henneaux and Teitelboim, 1992; Garcia and Vergara, 1996; Su, 2001). To
make transitions of the generating functional to arbitrary covariant gauges, we
have made use (Manoukian, 1986, 1987), in the process, of so-called δ function-
als (Schwinger, 1972, 1973). The δ functionals, however, are defined as infinite
dimensional continual integrals corresponding to the different points of spacetime
and hence the gauge transformations were carried out in the spirit of path integrals.

The purpose of the present investigation is, in particular, to remedy the
above situation involved with delta functionals, and we here derive the gauge
transformations, providing explicit expressions, for the full vacuum-to-vacuum
transition amplitude to the generating functionals of arbitrary covariant gauges
and, in turn, to the celebrated Fock–Schwinger (FS) gauge xµAµ = 0 (Fock, 1937),
as well as the axial gauge nµAµ = 0 for a fixed vector nµ, for the Abelian (QED)
gauge theory by an entirely algebraic approach dealing only with commuting (or
anti-commuting) external sources. The interest in the FS gauge, in gauge theories,
in general, is that it leads to Faddeev–Popov ghost-free theories, cf. (Kummer
and Weiser, 1986), the gauge field may be expressed quite simply in terms of
the field strength (Kummer and Weiser, 1986; Durand and Mendel, 1982) and
it turns out to be useful in non-perturbative studies, cf. (Shifman et al., 1979).
Needless to say, the complete expressions of such generating functionals allow
one to obtain gauge transformations of all the Green functions in a theory simply
by functional differentiations with respect to the external sources coupled to the
quantum fields in question and avoids the rather tedious treatment, but provides
information on, the gauge transformation of diagram by diagram (Handy, 1979;
Feng and Lam, 1996) occurring in a theory. A key point, whose importance
cannot be overemphasized, in our analysis (Manoukian, 1986, 1987) is that, a
priori, no restrictions are set on the external source(s) Jµ coupled to the gauge
field(s), such as a ∂µJµ = 0—restriction, so that variations of the components
of Jµ may be carried out independently, until the entire analysis is completed.
The present method is expected to be applicable to non-Abelian gauge theories
including supersymmetric ones and the latter will be attempted in a forthcoming
report. Some classic references which have set the stage of the investigation of the
gauge problem in field theory are given in Landau and Khalatnikov (1954), Landau
and Khalatnikov (1956), Johnson and Zumino (1959), Zumino (1960), Bialynicki-
Birula (1968), Mills (1971), Slavnov (1972), Taylor (1971), Abers and Lee (1973),
Wess and Zumino (1974), Salam and Strathdee (1974), Becchi et al. (1975),
Utiyama and Sakamoto (1977). For more recent studies which are, however, more
involved with field operator techniques and their gauge transformations may be
found in Sardanashvily (1984), Kobe, (1985), Oh and Soo (1987), Sugano and
Kimura (1990), Gastmans et al. (1996), Pons et al. (1997), Gastmans and Wu
(1998), and Banerjee (2000).
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2. GAUGE TRANSFORMATIONS

The Lagrangian density under consideration is given by a well-known
expression (Manoukian, 1986, 1987)

L = −1

4
FµνF

µν + 1

2

[(
∂µψ

i

)
γ µψ − ψγ µ ∂µψ

i

]
− m0ψψ

+ e0ψγµψAµ + ηψ + ψη + AµJµ (1)

where η, η, Jµ are external sources, and no restriction is set on Jµ (such as
∂µJµ = 0) in order to carry out functional differentiations with respect to all of
its components independently.

Our starting point is the vacuum-to-vacuum transition amplitude in the
Coulomb gauge given by Manoukian (1986, 1987)

〈0+|0−〉 = exp

[
i
∫

L ′
I

]
〈0+|0−〉0 ≡ FC[η, η̄, J ] (2)∫

L ′
I(η, η̄, J ) =

∫
(dx)

(
e0

δ

iδη(x)
γ µ δ

iδη̄(x)

δ

iδJµx

)
(3)

where

〈0+ |0−〉0 = exp

[
i
∫

(dx) (dx ′) η(x)S+(x − x ′)η(x ′)
]

× exp

[
i

2

∫
(dx) (dx ′) Jµ(x)DC

µν(x, x ′)J ν(x ′)
]

(4)

with S+(x − x ′) denoting the free electron propagator, and, in the momentum
description, (k,m = 1, 2, 3),

DC
km(q) =

(
δkm − qkqm

�q 2

)
1

q2 − iε
(5)

DC
0k(q) = 0 = DC

k0(q) (6)

DC
00(q) = − 1

�q 2
. (7)

We introduce the generating functional

F
[
ρ, ρ, K; G

] = exp

[
i
∫

L ′
I(ρ, ρ, K)

]
exp

[
i
∫

(dx) (dx ′) ρ(x)S+(x − x ′)ρ(x ′)
]

× exp

[
i

2

∫
(dx) (dx ′) Kµ(x)Dµν

G (x, x ′)Kν(x ′)
]

(8)
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where in the momentum description

D
µν

G (q) =
(

gµν − qµqν

q2

)
1

q2 − iε
+ qµqνG(q2) (9)

and G(q2) is arbitrary.
We show that

FC[η, η, J ] = eiW ′
F

[
ρ, ρ,K; G

]|ρ = 0,ρ = 0,K = 0 (10)

where

W ′ =
∫

(dx) η(x) exp

[
−ie0a

µ δ

iδKµ(x)

]
δ

iδρ(x)

+
∫

(dx)
δ

iδρ(x)
exp

[
ie0a

µ δ

iδKµ(x)

]
η (x)

+
∫

(dx) ((gµσ − aµ∂σ )Jσ (x))
δ

iδKµ(x)
(11)

and

aµ =
(

0,
�∇

∇2

)
= gµk ∂k

∇2
(12)

relating the Coulomb gauge to arbitrary covariant gauges.
To establish (10), we start from its right-hand side. We note, in a matrix

notation, that

eiW ′
exp

[
iρS+ρ

]
exp

[ i

2
KµD

µν

G Kν

]
= exp

[
i

(
ρ + η exp

[
−ie0a

µ δ

iδKµ

])
S+

(
ρ + exp

[
ie0a

µ δ

iδKµ

]
η

)]
× exp

[ i

2

(
Kµ + (gµσ − aµ∂σ ) J σ

)
D

µν

G

(
Kν + (gνλ − aν∂λ)J λ

)]
(13)

and since L ′
I(ρ, ρ,K), is classical, is invariant under transformations ρ(x) →

ρ(x) exp
(
i�(x)

)
, ρ(x) → exp

(−i�(x)
)
ρ (x) for an arbitrary numerical function

�(x), and we eventually set ρ = 0, ρ = 0, the right-hand side of (10) becomes

exp

[
i
∫

L ′
I(η, η, J )

]
exp

[
i

(
η exp

[
−ie0a

µ δ

iδKµ

])
S+

(
exp

[
ie0a

µ δ

iδKµ

]
η

)]
× exp

[ i

2
(Kµ + (gµσ − aµ∂σ )J σ )Dµν

G (Kν + (gνλ − aν∂λ)J λ)
]

(14)
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with Kµ → 0. Now we use the identity

exp

[
ie0

∫
(dx)

(
δ

iδη(x)
γ µ δ

iδη(x)
∂µ�(x)

)]
exp[iηS+η]

= exp[i(η eie0�)S+(e−ie0�η)
]

(15)

to rewrite the above expression as

exp

[
ie0

∫
(dx)

(
δ

iδη(x)
γµ

δ

iδη(x)

(
gµσ − aσ ∂µ

) δ

iδKσ (x)

)]
exp[iηS+η]

× exp
[ i

2

(
Kµ + (

gµσ − aµ∂σ

)
J σ

)
D

µν

G

(
Kν + (

gνλ − aν∂λ

)
J λ

)]
(16)

which for Kµ → 0 reduces to the left-hand side of (10) since(
gµσ − aµ∂σ

)
D

µν

G

(
gνλ − aν∂λ

) = DC
σλ. (17)

Almost an identical analysis as above shows, by noting in the process,(
gµσ − ãµ∂σ

)
D

µν

G

(
gνλ − ãν∂λ

) = (
D0

)
σλ

≡ DL
σλ (18)

with

ãµ = ∂µ

�
, � ≡ ∂µ∂µ (19)

where the right-hand side of (18) defines the photon propagator in the Landau
gauge, with G in (9) set equal to zero, that

F [η, η, J ; G = 0] = eiW̃ ′
F [ρ, ρ,K; G]|ρ=0,ρ = 0,K = 0 (20)

where W̃ ′ is given by the expression defined in (11) with aµ in it simply replaced
by ãµ, thus relating the Landau gauge to arbitrary covariant gauges.

The Fock–Schwinger gauge xµAµ = 0, allows one to write

A0 = xkAk

x0
(21)

which upon substitution in (1), and varying L with respect to Ak yields

∂µFµk − xk

x0
∂µFµ0 = −jk + j 0 xk

x0
(22)

where

jµ = e0ψγ µψ + Jµ. (23)

We note that (22) holds true with k replaced by 0 in it giving 0 = 0, i.e., we may
rewrite (22) as

∂µFµν − xν

x0
∂µFµ0 = −jν + j 0 xν

x0
≡ Sν. (24)
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By taking the derivative ∂ν of (24), we may solve for (∂µFµ0)/x0,

−∂µFµ0

x0
= (∂ x)−1∂σ

(
−jσ + j 0 xσ

x0

)
(25)

which upon substituting in (24) gives

∂µFµν = −[
gνσ − xν(∂ x)−1∂σ

]
jσ . (26)

By taking ν = k, and taking the derivative ∂k of (26), we may write

−∂0A
0 = 1

∇2

(
∂2

0 ∂kA
k + ∂kS

k
)

(27)

which when substituted in (26) gives

Aν = �
−1Sν + ∂ν

∇2

(
∂kA

k − 1

�
∂kS

k

)
. (28)

That is, Aν is of the form

Aν = �
−1Sν + ∂νa. (29)

For ν = k, and multiplying (29) by xk/x0, we have from (21)

A0 = xk

x0
�

−1Sk + xk

x0
∂ka. (30)

On the other hand, directly from (29) with ν = 0 in it,

A0 = �
−1S0 + ∂0a (31)

which upon comparison with (30) leads to

x∂a = −xµ
�

−1Sµ. (32)

From (29), (32) and the definition of Sν in (24), we obtain

Aν = − 1

�

(
gνµ − ∂ν 1

x ∂ + 2
xµ

) (
gµσ − xµ

1

∂x
∂σ

)
jσ (33)

where we have noted that ∂x = 4 + x∂ . It is straightforward to check from (33)
that xνA

ν = 0 is indeed satisfied.
To establish the transformation from covariant gauges to the FS gauge, we

have to pull �
−1 in (33) between the two round brackets. To this end we note that

�x∂ = (x∂ + 2) � (34)

and hence

(� x∂)−1 = (x∂)−1
�

−1 = �
−1(x∂ + 2)−1 (35)
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i.e.,

1

�

1

x∂ + 2
= 1

x∂

1

�
. (36)

We may also use the identity

1

�
xµ = xµ 1

�
− 2

∂µ

�
(37)

and since ∂µ when applied to the second factor in (33) gives

∂µ

(
gµσ − xµ

1

∂x
∂σ

)
= 0. (38)

We obtain from (36)–(38), (33)

Aν =
(

gνµ − ∂ν 1

x∂
xµ

)
1

(−�)

(
gµσ − xµ

1

∂x
∂σ

)
jσ . (39)

Now we invoke the transversality property in (38) to rewrite (39) as

Aν =
(

gνµ − ∂ν 1

x∂
xµ

)
1

(−�)

[
gµρ − H (�)∂µ∂ρ

](
gρσ − xρ 1

∂x
∂σ

)
jσ (40)

where H (�) is arbitrary on account of (38).
It remains to set

gρσ − xρ 1

∂x
∂σ = Oρσ (41)

and note that for the factor multiplying jσ on the right-hand side of (40),

〈x|(•)|x ′〉 =
∫

(dx ′′) (dx ′′′)〈x ′′|Oµν |x〉〈x ′′|(DH)µρ |x ′′′〉〈x ′′′|Oρσ |x ′〉 (42)

where, as shown in the appendix, we have noted that

〈x|∂ν(x∂)−1xµ|x ′〉 = 〈x ′|xµ(∂x)−1∂ν |x〉 (43)

and we recognize 〈x ′′|(DH )µρ |x ′′′〉 to have the very general structure in (9). Hence
we may write, as in (10),

FFS[η, η, J ] = eiW ′′
F [ρ, ρ,K; G]|ρ = 0,ρ = 0,K = 0 (44)

where W ′′ is given by (11) with aµ in the latter replaced by xµ(∂x)−1. [For
interpretation of xµ(∂x)−1∂ν see the appendix and also Kummer and Weiser
(1986).]

The axial gauge nµAµ = 0, with nν a fixed vector, is handled similarly, with
Aν in (39) now replaced by

Aν =
(

gνµ − ∂ν 1

n ∂
nµ

)
1

(−�)

(
gµσ − nµ

1

n ∂
∂σ

)
jσ (45)
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and a similar expression as in (44) holds with aµ in (10) replaced by nµ(n ∂)−1

in it.

3. CONCLUSION

We have seen that the algebraic method developed in this work solves the
gauge transformation problem relating generating functionals in different gauges
starting from the vacuum-to-vacuum transition amplitude in the Coulomb gauge.
Needless to say, their transformation rules give the transformations of all the
Green functions encountered in the theory and avoids unnecessary tedious steps
otherwise involved. The simplicity and the power of the method is evident and it is
expected to be applicable to non-Abelian gauge theories, with (Manoukian, 1986,
1987) or without Faddeev–Popov ghosts, as well as to supersymmetric theories.
We have not, however, touched upon uniqueness problems such as the Gribov
ambiguity (Gribov, 1978; Zwanziger, 1981). This and extensions to non-Abelian
cases and supersymmetric theories will be attempted in a forthcoming report.

APPENDIX

For an explicit derivation of (43), we multiply ∂ν by −i and write

∂ν(x∂)−1xµ = (xp + 1)−1pνxµ =
∞∑

n=0

(−1)n(xp)npνxµ (A.1)

upon moving, in the process, pν to the right. Using the identity

(xµpµ)op =
∫

(dx)
(dp)

(2π )4
|x 〉〈p| xp eixp (A.2)

we note that

(xp)n =
∫ [

n∏
i=1

(dxi)

(
dpi

)
(2π )4

xipi

]
eixn(pn−pn−1)eixn−1(pn−1−pn−2) . . . eix1p1 |x1 〉〈pn|

(A.3)
and hence

〈x|∂ν(x∂)−1xµ|x ′〉 =
∞∑

n=0

(−1)n
∫ [

n∏
i=1

(dxi)
(dpi)

(2π )4
xipi

]
pν

nx
′µδ(x − x1)

×eixn(pn−pn−1)eixn−1(pn−1−pn−2) . . . eix1p1 e−ipnx. (A.4)

This may be rewritten in an equivalent form by making the change of variables

x1 = yn, . . . , xn = y1; p1 = −qn, . . . , pn = −q1 (A.5)
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leading to

〈x|∂ν(x∂)−1xµ|x ′〉 = −
∞∑

n=0

∫ [
n∏

i=1

(dyi)
(dqi)

(2π )4
yiqi

]
x ′µqν

1 δ(yn − x)

×eixq1 eiy1(q2−q1)eiy2(q3−q2) . . . e−iynqn . (A.6)

On the other hand,

〈x|xµ(∂x)−1∂νx ′〉 = 〈x|xµpν(p x − 1)−1|x ′〉

= −
∞∑

n=0

〈x|xµpν(p x)n|x ′〉 (A.7)

and

(pµxµ)op =
∫

(dx)
(dp)

(2π )4
|p 〉〈x| pxe−ipx (A.8)

(p x)n =
∫ [

n∏
i=1

(dxi)

(
dpi

)
(2π )4

pixi

]
eix1(p2−p1) . . . eixn−1(pn−pn−1)e−ixnpn |p1 〉〈xn|

(A.9)
leading to

〈x|xµ(∂x)−1∂νx ′〉 = −
∞∑

n=0

∫ [
n∏

i=1

(dxi)
(dpi)

(2π )4
pixi

]
xµpν

1δ(xn − x ′)

× eixp1 eix1(p2−p1) . . . eixn−1(pn−pn−1)e−ixnpn (A.10)

which upon comparison with (A.6) establishes (43).
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